Twisted pre-Lie algebras of finite topological spaces
نویسندگان
چکیده
In this paper, we first study the species of finite topological spaces recently considered by Fauvet, Foissy, and Manchon. Then, construct a twisted pre-Lie structure on connected spaces. The underlying defines coproduct different from those already defined authors above. end, illustrate link between Grossman–Larson product proposed coproduct.
منابع مشابه
Twisted Toroidal Lie Algebras
Using n finite order automorphisms on a simple complex Lie algebra we construct twisted n-toroidal Lie algebras. Thus obtaining Lie algebras wich have a rootspace decomposition. For the case n = 2 we list certain simple Lie algebras and their automorphisms, which produce twisted 2-toroidal algebras. In this way we obtain Lie algebras that are related to all Extended Affine Root Systems of K. Sa...
متن کاملHall basis of twisted Lie algebras
In this paper we define a minimal generating system for the free twisted Lie algebra. This gives a correct formulation and a proof to an old statement of Barratt. To this aim we use properties of the Lyndon words and of the Klyachko idempotent which generalize to twisted Hopf algebras some similar results well known in the classical case.
متن کاملTwisted Lie Algebras and Idempotent of Dynkin
In this paper we define a Dynkin idempotent for twisted Hopf algebras and generalize the results of Patras and Reutenauer in the classical case. We treat as a special case the free Lie algebra and so generalize the results of Waldenfels.
متن کاملMullineux involution and twisted affine Lie algebras
We use Naito-Sagaki’s work [S. Naito & D. Sagaki, J. Algebra 245 (2001) 395–412, J. Algebra 251 (2002) 461–474] on LakshmibaiSeshadri paths fixed by diagram automorphisms to study the partitions fixed by Mullineux involution. We characterize the set of Mullineux-fixed partitions in terms of crystal graph of basic representations of twisted affine Lie algebras of type A (2) 2l and of type D (2) ...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2021
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2021.1999461